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I. Phys. A: Math. Gen. 25 (1992) 6005-6026. Rinted in the UK 

Equivalence of two graphical calculi 

Vadim B Kuznetsov 
Depanment of Mathematical and Computational Physics, Institute of Physics, 
St Petersburg University, St Petenburg 198904, Russia 

Received 26 February I992 

Abstract. We consider the integrable systems which are connected with separation of 
variables in the Helmholtz operator on the real Riemannian spaces of constant curvature. 
An isomorphism is given for these systems with a quantum hyperbolic Gaudin magnet. 
Using this isomorphism, the complete classification of all separable coordinate systems on 
the manifolds considered is provided by means of the corresponding L-operators for the 
Gaudin magnet. 

1. Introduction 

Let us consider the problem of separation of variables in the Helmholtz equation 

where the Hamiltonian H describes the free motion of a quantum particle in the 
Riemannian space with metric geB (g=det(g@)).  We will only consider the real 
n-dimensional positive definite Riemannian spaces of constant curvature: n-sphere 
S., Euclidean n-space E., and upper sheet of the double-sheeted hyperboloid H. 
having a constant curvature equal to 1, 0 and -1, respectively: 

(i) S,, the set of real vectors x = (x I , .  . . , x"+~)  which satisfy X::: x', = 1 and have 
infinitesimal distance dx2 = XZ;', dx:; 

(ii) E., the set of real vectors x = (x, , . . . , x,,) with infinitesimal distance dx2 = 
X L I  dx:; 

(iii) H., the set of real vectors x=(xo ,  x l , .  . . , xn )  which satisfy x;-XZ==, x i =  
1, XO> 1, and have infinitesimal distance dx2=  dxi-XZ=, dx:. 

Separation of variables (e.g. see [l]) indicates solution of equation (1.1) for the 
wavefunction rIr in the following product form: 

where 'Pm depends only the variable z, and on the complete set of quantum numbers 
c., which are the eigenvalues of mutually commuting integrals of motion. We will call 
orthogonal coordinate systems, in which equation (1.1) allows variable separation, 
s-systems (or s-coordinates or s-variables) from the abbreviation of the word seporoble. 
The main problem is to find all s-systems, to introduce corresponding separation 
variables, to carry out the procedure of variable separation, and to write explicitly the 
separation equations (i.e. ones for Ym), which we then have to solve somehow. 

0305-4470/92/226005+22$07.50 @ 1992 IOP Publishing Ltd 6005 
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The Helmholtz equation (1.1) with the g-metrics of an  n-sphere, Euclidean n-space 
or n-hyperboloid has been met in a great number of works (see [l-51 and references 
therein). It is impossible to mention all those concerning separation of variables in 
this equation. We will refer here to [4] and [51, where the complete classification of 
all s-systems for the above manifolds is given. 

Each s-system gives rise to a set of separation constants or integrals of motion. 
These integrals are quadratic functions on the generators of the Lie symmetry algebras 
of the spaces considered: 

(i) 

i[M+ My61 = S,,M, + S,,Ma, + S & L  + aa&= 
(ii) e(n): Mmp,pl n , p , y = l ,  ..., n 

i[Maa, P,I = &P, - L,P~ 
(iii)  SO(^, 1): Map, Mo,=xo~y+X~Jo n , p , y = l ,  ..., n 

i[M,p. MO,] = sa$f~. -&,MO, 

so(n + 1):  Mea = xmpa -xap, U, p = 1, . . . , n + 1 

[P., Pal = 0 

i[Mo,, Mop] = M.B 

where the variables x, and pa are canonical: [ p a ,  xa] = -isma. The integrals of motion 
commute between themselves, and, due to full separation, their number is equal to 
the number of degrees of freedom. So we can say that each s-system is connected to 
the Liouville integrable system with a complete set of quadratic integrals of motion. 

In [4,5] the graphical technique to characterize all s-systems on S., E. and H. 
was developed. Each particular s-system was fixed by a graph. In the present paper 
we propose the equivalence of that graphical calculus to  the one appearing in the well 
known problem of summing n quantum momenta. To recap, one must sum the n 
three-dimensional momenta s,, a = 1 , .  . . , n. If one knows how to sum the k = 2, .  . . , n 
momenta then one has a graph corresponding to the particular method of summing. 
To know how to sum is equivalent to knowing how to supplement the total momentum 
J = X", s, by n -2  additional mutually commuting quadratic operators on s, to obtain 
the complete set of operators. 

In the present paper we give the algebraic interpretation of the classification in 
[4,5]. We establish here the isomorphism between all the integrable systems, connected 
with all possible s-systems for the three spaces, and an n-site su(l ,1) Gaudin magnet. 
This Gaudin magnet is the integrable system, with a complete set of quadratic integrals 
of motion, given on the direct sum of the Lie algebras of rank 1: e:=, su,(l, 1). Using 
this isomorphism, the complete classification of separable coordinate systems is pro- 
vided by means of the corresponding L-operators for the Gaudin magnet. The Gaudin 
magnet considered in this paper is the universal integrable system with quadratic 
: - A - - - - ? -  -.---A:-- r -- -- -..a-- -C...-.:m- -- ..,~ PI- IO., r h - +  :a hnr rrllcglals U, ,,,"l,U,, ,,a",,,g d a2 a,, 5nua 1 1 1 L C g L a 1  U, L I I Y L I Y L I ,  n u  w c  -a11 "'IJ LLI'ELL I, 11-0 

a direct relation with the summing of momenta. 

2. The quantum hyperbolic Gaudin magnet 

LetusconsiderthedirectsumofLiealgebrasofrank 1: &=e:=, su,(l, l).Generators 
s,, a = 1,. . . , n, of the &-algebra satisfy the commutators 

g=diag(l ,  -1, -1). (2.1) I [si, si1 = -iS,pEjj*lgl,s, 



Equivalence of two graphical calculi 6007 

In the following we will use the g-metric to calculate the norm and scalar product of 
the operator vectors se: 

1 1  2 2  3 3  s’, = (sa, s,) = (sL)2- (s’,)2- ( S y  (sa, so) = s,so-s.so - s , s p  

The Casimir operators of the d-algebra (2.1) have the form s’, = k,(k. - l),  where for 
the discrete serieAka = 1,;. 2,5 , .  . , , and for the representation ofthe universal envelop- 
ing group-the SU( 1, l )  group-k, varies continuously from zero to infinity: 0 < k, < W. 

We will define as the hyperbolic Gaudin magnet [6-91 the foilowing quantum 
integrable Hamilton system on d given by n commuting integrals of motion H,: 

Here e, are mutually non-coinciding real parameters of the model. To be more exact 
one bas to call this model the n-site su(1, 1)-XXX Gaudin magnet. Notice that all 
the H, are quadratic functions on generators of the d-algebra, and we have the 
equalities 

where the new variable 

J =  1 s. (2.3) 

is introduced, which is the total sum of the hyperbolic momenta s,. The components 
of the vector J obey the su(1,I) Lie algebra similarly to (2.1) and commute with all 
the H,. The complete set of commuting integrals of motion is provided by the following 
choice: H,,J2, and, for example, (1’)’. The integrals (2.2) and (2.3) are generated by 
the 2 x 2 L-operator [7-9] 

e-, 

q-de! L(u)  = -A2(u)-f{E!u); C(U)! 

s: ” H, =-I -- 2 
.,=I U-e,  m = , ( u - e a ) 2  

satisfying the standard linear algebra with the r-matrix being the operator P of 
permutation in P @ C 2 :  

/1000\ 

Here we use the familiar notation for the tensor products of L( U )  and the 2 X 2 unit 
mairix i: 

1 2 
L( U )  = L ( u ) B I  L(u)  = IO L(u).  

It follows from equation (2.5) that q-det L(u)  is the generating function of the 
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commuting integrals of motion: 

[q-det L ( u ) ,  q-det L ( u ) ] = O  

3. n-sphere Sn-l 

Let us consider the following realization of the &-algebra (2.1) in terms of the canonical 
operators p.. x , ( [ p , , x , ] =  -ismp): 

s : , = ( p : + x ; ) / 4  sf, = ( p i  - x 2 ) / 4  s ’ , = { P , , x , } / ~ .  (3.1) 
In this case the Casimir operators take the values s’, = -A ,  i.e. k, =a,$. Introduce the 
new operators 

(3.2) Mep = X-P, - xppm 
which are the generators of rotations in the space of vectors x E W. We have 

(se, s p ) = Q ( M : p + t )  Ly f p. (3.3) 

i[M+ M ~ s I = S a l M ~ p f S . * M ~ l f s p ~ M , s + S p s M , .  (3.4) 

The variables Map are the generators of the Lie algebra s o ( n ) :  

Equaiiiy (3.33 estabiishes a simpie quadratic connection between the generators s, of 
and the Mmp of so(n) .  Under this isomorphism the integrals (2.2) transform into 

the following family of integrals, describing free motion on the n-sphere Sn-,: 

1 h - h  
0 = 1  4 e, - e, H =  1 h,H,=- 1 9 ( M ’ , p + f ) .  (3.5) 

For h,= e, we get the Casimir operator of the s o ( n )  algebra, X e < p  M i , ,  and for 
h, = e t  we have the Hamiltonian of the quantum n-dimensional Euler-Manakov top, 

possessing in our case the complete set of quadratic integrals of motion. Integrals (3.5) 
have the form of the Uhlenbeck integrals for the n-dimensional Neumann system in 
the case of a vanishing quadratic field, i.e. for the free motion on the n-sphere S._,. 

Expressions for the components of total hyperbolic momentum J take the form 

I’ =a( p’+ x’) J 2  = a (  p 2 -  x’) -’’=+I IP,, xJ. (3.7) 
01 

Variables Mmp and J form the direct sum so(n)Osu(l,  l ) ,  

[ M m p , J ’ ] = 0  [ J J ,  J k ]  = -iejkrgrJ’ g=diag(l , - l , - l ) .  

Recall that the three variables I’ commute with all the H (equation (3.5)) and we can 
choose from them only two (additional to H) commuting integrals. Let them be the 
following quantities: the square of the total momentum, 

J 2 = $  I M’.,+&(n2-4n) (3.8) 

which is expressed through the Casimir operator of algebra (3.4), and, simultaneously, 
is equal to the Casimir operator of the su(1,l) algebra (3.7), and the integral 

=<p 

2(J1- J 2 )  x*= c (3.9) 
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which gives us the equation of the n-sphere ( c =  1 ) .  Note that the presented 
quadratic isomorphism (3.1)-(3.9) between variables s, and Mas connects two 
integrable systems formulated on the different algebras (2.1) and (3.4). More exactly, 
the isomorphism is between the integrable system on the &-algebra with generators 
s, and the one on the so(n)Osu(l, 1)  algebra with generators Mep and .I 

Let us proceed to the separation of variables on the n-sphere Sn-, (3.9). Having 
the above-shown isomorphism of the two systems, we can easily carry out separation 
of variables using the L-operator (2.4) and the algebra (2.5) for the hyperbolic Gaudin 
magnet. The most general s-system on Sa-, is the system of ellipsoidal coordinates 
[4,5], which is graphically pictured by the following 'irreducible' block: 

e, e2 e, . . . . . . . 
(3.10) 

where e, E Iw are (as before) mutually non-coinciding real parameters, ordered in 
increase. The separation variables are defined as zeros of the off-diagonal element 
B ( u )  ofthe L-matrix (2.4): B ( u , ) = O , j = l ,  . . . ,  n - I ,  

These ellipsoidal coordinates U; on the sphere Sa-, satisfy the inequalities 

e , < u , < e , < u ,  ... <u.-,<e. 

Each cell e, of the block (3.10) gives rise to an item of the L-operator (2.4) in summing 
upon a. Notice here that x', = 2(sL -si). 

For each U; let us define the additional variable U, as follows: 

(3.12) 

(the left substitution!). In what follows we will introduce the s-variables U, and 
conjugate to them uj as above: the first ones as zeros of B ( u ) ,  and the second ones as 
values of A(u) in these zeros. 

The changing of the variables s, (or Mms, J )  for the new variables U,, U,, e, and J' 
is the procedure of variable separation. One can rewrite the L-operator (2.4) with the 
new variables as 

C ;=, U - U, 

where 

(3.14) 

The formula for A(u) is obtained by interpolation with data (see equations (3.12), 
(2.4), (3.1) and (3.7), 

I 

Y - m  U A(u,)=iuj j =  1 , .  . . , n - 1 A(u)  - - J 3 + .  . . 
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and the expression for B ( u )  follows from the definition of the s-variables U, (equation 
(3.11)). 

Using the algebra (2.5) for the L-operator (2.4), one can prove the following 
commutators: 

I 

[c, J3 ]= ic  [U,, uk] = -i8,k 
3 3 (3.15) 

[c,uil=[c,ui]=[J , u i ] = [ J , u i ] = O  [Ui, ukl=[u,,Uk1=0. 

The procedure by which similar relations are derived from the algebra (2.5) is given 
in [SI. Having the interpolation (3.13) for A(u) and B ( u ) ,  one can easily verify the 
following properties of conjugation of the introduced operators: 

c* = c ( J3)*  = I 3  u * = u <  D,uj = D, . (3.16) 

From the vj one can construct the self-conjugated operators wj by the formulae 

(3.17) 

The operators c, J 3 ,  U, and w, also obey the algebra (3.15). Equating the residues at 
U = e, on the right- and left-hand sides of the interpolation for A(u)  (equation (3.13)) 
gives the equality 

(3.18) 

All the other explicit formulae for changing of variables can be listed, i.e. the connection 
between the two sets of 2n variables: p m ,  x, and uj, U,, c, J 3 ,  where U = 1 , .  . . , n and 
j =  I , .  . . , n - 1 .  

A further problem is to find the separation equations. Let us substitute U = U, (the 
iefi subsiiiuiionij in ihe equation for q-dei {equaiion ji.4j) io gei ihe n - i  operator 
equalities: 

(3.19) 

We consider the spectral problem 

H,I = h - 9  (3.20) 

where the Helmholtz operator (1.1) is the J 2  commuting with all the Ha. By action of 
the right- and left-hand sides of the operator equality (3.19) on Y, we obtain the n - 1 
equations of the form 

(3.21) 

where the brackets ( ) denote the eigenvalue of an operator. In terms of w, the above 
equations look - like 

(3.22) 

If we demand factorization of the wavefunction Y in accordance with condition (1.2) 
of variable separation in the form 

Y = ~ ~ l Y t ( u , )  (3.23) 
1-1 
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el 

where V is the Vandennond determinant, 

v =  n ( u j - u h )  
i c h  

....... . . . . . . .  e, 

(3.24) 

then the partial functions V j ( u j )  will satisfy the following separation equations: 

(3.25) 

where P(u) =n:=, (U- em) .  Notice that the Vandennond determinant (3.24) appears 
to provide the invariant measure on the sphere S.-,(c=x2= 1). 

The equa6ons obtained are separation equations for each of n - 1  degrees of 
freedom which are connected by common eigenvalues of the integrals H,. We did not 
carry out the rather complex procedure of standard separation of variables in the 
Helmholtz equation [ l ,  2,4,5], which gives the s-equations (3.25). Representation 
through 2 x 2 matrices (2.4) and (2 .5) ,  which is equivalent to the Lax pair, did allow 
us to simplify greatly the derivation of all the formulae and, in particular, the main 
equations (3.25) for partial functions. 

In the following it will be more suitable to deal with the vector L(u) instead of 
the L-matrix (2.4): 

. . 

where 

0 -1 

This vector satisfies the similar linear algebra (see equations (2.1) and (2.5)) 

(3.26) 

(3.27) 

The block with fs can in turn consist of complex cells. In this case there must be 
attached to each such cell one arrow pointing at its 'internal structure', and so on. The 
general s-system on the n-sphere is fixed by a connected graph consisting of the blocks 
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2 

f l  

(3.10) with the different parameters e,, and these blocks are linked by arrows. In each 
block (apart from the highest) only one arrow can enter. From each block the arrows 
can descend: one from each complex cell. A cell is called elementary if no arrow 
descends from it. The dimension of the sphere S - ,  associated with the graph is 
calculated by the formula k = (number of elementary cells). The elementary vector 

. s2 = -1 . O . .  ,6 IS associated with each elementary cell, the complex vector s,: s', # -& 
is associated with each complex cell, and the elementary momenta, of which the 
complex vector consists, are indicated by arrows on the graph. Consider, for example; 
the graph 

/ \ (3.28) 

J 4 5 

f 2  f, f4 

which gives some s-system on the sphere S6. The momenta se,, s f i ,  sfi, sr,. s ~ ,  s d , ,  sdi 
are elementary, but s.,=Z:=, sre, S.,=Z:=~ sds are complex. To each cell there 
corresponds a vector, 

L J u )  = s , , / (u  - e , )  L , ( u ) = s e 2 / ( u - e 2 ) , .  .. 
and for all cells gathered in some block we have the vector L( U )  in the form of a sum 
(3.26). Each elementary vector is parametrized by the canonical variables x, and p m ,  
in full analogy to the non-degenerate case (3.1). Let we deal with the sphere S._,. 
Then there exist n elementary momenta s,, a = 1,. . . , n, and formulae (3.1)-(3.4) are 
true. Introduce ordering of the elementary cells by writing down the integral number 
n = 1,. . . , n in increasing order for the corresponding elementary momentum as 
follows: first we go from left to right in the highest block, up to the first complex cell, 
then we descend to a subblock, where go again from left to right, up to the first complex 
cell in this subblock, and so on. If we arrive at the end of some subblock then we go 
up, and so on. For instance, for the graph (3.28) the ordering looks like 

I I I 

J \ 
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in the case of the vector L(u). They have different forms for different blocks. Let US 

list all the s-systems for the so(4) Lie algebra, i.e. on the sphere S3: 

(i) Jacobi elliptic coordinates, 

0 1 a b 

L(u) = sJ u + s2 / (u  - 1) + s 3 / ( u  - a )  + s./(u - b )  

H, = M:, + M : , / a  + M:4/ b 

H 2 =  M:,  + M:J(I - a ) +  Mi4/  (1  - b) .  

(ii) Lam6 rotational coordinates, 

L,(u)  =s,/u+s2/(u -1)+(s,+s,)/( U - a )  

L2(u)  = s3 /u  +s4/(u - 1 )  

H ,  = M:, H 2 =  M:,+M:,+aM:,  

(iii) Lam6 subgroup reduction, 

L,(u)  = S I / U  +(s2+  s,+ s4)/(u - 1) 

L2(u) = s* /u  + s3/ (u  - 1) + s4/(u - a )  

H ~ = M : , + M : ~ + M : ~  H2=M:.+aM:, .  
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(iv) Spherical coordinates, 

&(U) = s,/u+(s,+s,+s,) / (u - 1 )  

L2(u) = S 2 / U + ( S ? + S , ) / ( U  - 1 )  

L,(u)  = s3 /u  +s , / (u  - 1) HI = M:,+ M:,  H , = M : , .  

(v) Cylindrical coordinates, - 
U 
J \  rTrq p7-7 

Ldu) = ( S I + S 2 ) / U + ( % + S , ) / ( U  - 1 )  

L2(u) = S l / U + S 2 / ( U  - 1) 

L3( U) = s3/u  + &/(U - 1) HI = M:2 H2 = Mi,. 
All these six types of s-systems are exactly the six ways of (generalized) summing 

the four su(1,l) momenta s,: 

(i) 

(ii) ( a )  

J = (s, + s2+ s3 + s,) 
J = (s, + s2+ (s3+ s,)) 

( b )  J = (SI +(s,+s,)+s,) 

J = (SI + (s2+ S) + s,)) 

J = (a + (s2 + (s3 + S d ) )  

J = ((SI +s2)+ (%+S4)) 

(iii) 

(iv) 

(V) 

where each pair of parentheses corresponds to a particular block on the graph. The 
integrals of motion are extracted from the L:(u) and the separation equations for the 
U, look like 

(3.30) 

where i is the index of a block, and j is the index of one of s-variables for this block. 
(U; + L:(u,))q = 0 
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Notice that in Lf(uj) in equation (3.30) the integrals H, are replaced by their eigenvalues 
h,. For the explicit form of these s-equations, see [2]. 

It is not difficult to derive also the formulae giving the explicit transformation to 
new variables. We recommend to the reader the original works [4,5] for more details 
concerning graphical records of the s-systems. Notice that our interpretation of the 
graphs presented here seems to be more transparent than in the original works, because 
we associate the hyperbolic momentum with each cell of a graph, and these momenta 
exist because of the non-trivial (but simple in formulae) isomorphism of two integrable 
systems. 

4. Euclidean space E. 

To proceed from the sphere Sn-, to the Euclidean space E. one bas to add the generators 
p y  to the rotations MmP (equation (3.2)), thus obtaining the e(n) Lie algebra for the 
generators M.,,p,, a, p, y = 1,. . . , n. One has also to write three more formulae in 
addition to equations (3.1)-(3.4): 

~ 

(4.1) 

Thus, a simple quadratic connection is established between the generators s, of the 
&-algebra and the generators of the e(.) algebra. The complete classification of all 
s-systems on E. [4,5] includes two non-degenerate cases: ellipsoidal and paraboloidal 
coordinates, and, of course, their possible degenerations fixed by different graphs. Let 
us first consider the ellipsoidal ones. Introduce 

(4.2) 

The integrals of motion H. in this case can be obtained as residues of L2(u) .  The 
ellipsoidal coordinates on E, are defined as before, i.e. as zeros of L’(u)  - L 2 ( u ) :  

(4.3) 

The separation equations have the standard form (3.30). Such coordinates U, are 
pictured by the following ~~ graph ~ [4,5]: 

I I> . . . . . . . (I I e ,  

Let us proceed to the description of paraboloidal coordinates. Introduce 

(4.4) 
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Paraboloidal coordinates on E. are defined as zeros L' (u) -L2(u) :  

. . . . .  

n 2 
X, z -- U +zx, =o*u = uj j = l , . .  .. n 

sp2u-e , - l  

. . . . .  

The cells em (s,) collected in the paraboloidal block (4.5) we will picture as [4,5] 

Or 

(ii) 

where the complex momenta of blocks are as usual marked by arrows pointing out 
their 'internal structure', which is described by blocks of the sphere Spm,. 

As an example of this technique let us list all s-systems in the three-dimensional 
Euclidean space, i.e. on the e(3) Lie algebra. Notice that If, and H2 given below are 
the additional integrals to p 2 ,  which is the Casimir operator of e(3). 
(i) Cartesian coordinates, 



(ii) Cylin 

Equivalence of two graphical calculi 6017 

L z ( u ) = s 2 / u - -  -1 :( :j LI(U) = S, /U  -:( -a) 
H 2 = p : .  

al coordinates, 

L , ( u ) = ( s , + s , ) / u - -  -1 L2(u)  = S I / U + S 2 / ( U  -1)  :i 1) 
(iii) Elliptic cylindrical, 

L, (u)  = s , / u + s 2 / (  U - a )  -- -1  :i 1) 
(iv) Parabolic cylindrical, 

L2(u)=s3 /u - -  -1 :( :j L, (u)  = s2/( U - a )  -- -U +2x, 
4 '( 



6018 V €3 Kurnetsov 

(v) Spherical, 

&(U) = ( s , + s , + s , ) / u  -- -1 

&(U) = sz/u + S,/(U - 1) 

= s I / ~ + ( s 2 + s 3 ) / ( ~  - 1) 

H, = M:,+ M:,+ M : ,  H ~ =  M:,.  

:( 1) 
 vi) Prolate spheroidal, 

L , ( u )  = sl/u + (s2+ s,) / (u - a )  -- -1 

H, = $ ( M i ,  + M;,)  + "pi 

L2(u)  = s2/u + s 3 / ( u  - 1) :( 1) 
H~ = M:,  

(vii) Oblate spheroidal, 

&(U) = (sl + s 2 ) / u + s 3 / ( u  L2( U )  = S I / U  + S J ( U  - 1) 

HI = $ ( M i , +  M:J - ap: H2= M:Z.  
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(viii) Parabolic, 

Ll(u) = (s2 + s3) / (u  - a )  

HI =IN2,  p z } + { M i 3 ,  p31+ a d  

L2( U )  = s2/u + s3/(u - 1) 

H~ = M ; ~ .  

(ix) Parabolodial, 

H , =  M : , / a + M : , / b + p :  H2 = M & / a  + M i 3 / (  a - b )  - p i  ~. 

(xi) Conical, 

L , ( u )  = (SI + S , + S , ) / U  -- -1 4 '( 
L2(u)  = s l / u  + s , / ( u -  1)+s3/ (u-a)  

Hl = M:, + M:, + M i l  H2 = M : , / a + M Z , / ( a  - 1). 
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In full analogy to section 3, one can restore all the vectors &(U) in the new variables 
U, and U,, thereby obtaining the explicit formulae of variables changing. Note that the 
classification of the s-systems presented for the Helmholtz equation in E., 

p2V = ET 
using the classification of the corresponding L-operators, is simpler than the standard 
procedure of variable separation. The separation variables and equations are defined 
in the same way as in the previous section; in doing so we get the separation equations 
of different form for the different blocks in a graph. In contrast, for the non-degenerate 
block we obtain a unique separation equation for all s-variables, but considered on 
different intervals. 

5. Hyperboloid H. 

To proceed from the sphere Sn-, to the hyperboloid H. one has to add the hyperbolic 
rotations Mo,=xop7+x,po to the Mao (equation (3.2)), obtaining the so(n, 1) Lie 
algebra for the generators Mpo, MO,, a, p ,  y = 1,. . . , n, which is the algebra of the 
isometry SO(n, 1) group of H,.  One also has to write the following realization of the 
new hyperbolic momentum so through the canonical operators xo andp, ( [ p , ,  x,,] = -i): 

s:= - (pi+x3/4 s i =  - (pi-x3/4 s:={Po, Xo}/4 

(5.1) 
3 

(so,s,)= -(Mi,-f)/8 

i [ K o ,  MO,] = So,M0, -&,Moo 

(so.  so) = -E 

i[Moa, Moo] = MmP. 
N 

Notice that, in contrast to the s,, one must choose the discrete D- series of the SU(1, 1) 
representation for the so (equation (5.1)). Thus, we have connected the generators 
s., so to the generators Mmo, Mo7. The complete classification of all s-systems on H. 
[SI is more complicated in comparison with the sphere and Euclidean space. There 
are four classes of s-systems here, U, ?B, &, and B, and in the U-, e- and %-classes 
the number of different coordinate types increases with dimension. We describe all 
these systems with the help of the corresponding vectors L(u) satisfying the algebra 
(3.27). The order of the description will follow the one fixed in the two previous 
sections. The algebraic interpretation presented allows us to formulate the theory for 
all s-systems on H. in a compact and uniform way. 

Let us begin with the class U. Introduce 

where the parameters e,,  . , , , e,,, are in increasing order. The separation equations 
are written in the standard way: 

(U:+L*(u*))(Y= 0 k = l , . .  . , n 

where the variables uk are defined as before as values of L3(uk)  (see equations (3.12) 
and (3.26)). The s-coordinates uk are pictured by the following 'irreducible' block [SI: 

en+, (5.3) 



Equivalence of two graphical calculi 6021 

[ a + i b  f l  f 2  f"+l . . . . .  

Let us proceed to the description of the s-systems of class B. Introduce new 
variables: 

' (5.7) 

1 1 
P --(pl*ipo) ' -a  x --(xl*ixo) +-a- 

xf = XF PT=PF 

Notice that the x+ and p* are canonical operators: 

[ P + . P - l = ~ x + , x - l = [ x * , P * l = o  [p+ , x-] = [p- , x,] = -i. 

From them the non-self-adjoint hyperbolic momenta 

p 2  + x: p:+xi 

{P+ 9 X S  

(5.4) 

(5 .5 )  

are constructed. The systems of class '23 are fixed by following vector L(u)(a,  beR): 
.. . 

The corresponding s-coordinates U, are pictured by the following 'irreducible' block [ 51: 

Consider now the s-systems of class &. Introduce the canonical operators x+ and 
p. via 

1 1 
x --(x,*x0) 

[P+, P-I = [x+. x-I = [XF, P*l = o  

P. = 3 (PI *PO) ' -a  
(5 .8 )  

[p+,x+]=[p-,x-]=-i. 

The vector L(u)  connected with s-systems of class CS has the form 

s, K M 
L ( u ) =  E - +-+- 

m=2u-gm_,  ( U - a ) '  u - a  

where parameters g,, . . . , gn-, E R, in increasing order, do not coincide with each other 
and with the real parameter a. Vectors K and M are defined as follows: 

P: + x i  
K = -  (5.10) 

where E = f l .  It is not difficult to verify that the L(u)  (equation (5.9))  satisfies the 
algebra (3.27), and K plus M obey the following e(2, 1) algebra: 

[K', K'] = O  [ K', M '1 = -iE,kngnnK" 

[MI, Mkl = -ieik.g..M". 
(5.11) 
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The coordinates uj of class Ci are pictured by the following 'irreducible' block [SI: 

[=..;I. (5.12) 

Consider now the final class iD. We will use the x+ and p* defined for class (5 by 
equation (5.8). Let us introduce the vector L(u) for this class, 

se I K M +-t- 
,=3u-h , - ,  ( U - a ) '  ( ~ - a ) ~  u - a  

L(u)= 1 ~ +- (5.13) 

where the parameters h, ,  . . . , h.-2c R, in increasing order, do not coincide with each 
other and with the real parameter a. Vectors I, K and M have the form 

M = s o t s ,  + s2. (5.14) 

It is easy to verify that L(u) (equation (5.13)) satisfies the algebra (3.27), and I,  K and 
M obey the following commutators: 

[ rJ ,  I " ]  = [ r ~ ,  K " ]  = o [K',  K"] = -iE,,,pgppIp 

[ I J ,  M"]=- '  lE,npgpplp [K' ,  M"] = -iEJnpgpPKp (5.15) 

[M', M"] = -iEJnpgPpMP. 

The s-coordinates U, of the class B are pictured diagrammatically as follows [SI: 

(5.16) 

In the cases U-!B there exists an  additional integral, which is the total hyperbolic 

J =  s o t s , t  ... ts..  (5.17) 

momentum: 

Its components take the form (cf equation (3.7)) 

where E~ = -1 if j3 = 0, and E~ = 1 otherwise. Variables Mmp, MO,, U, 0, y = 1,. . . , n, 
and J constitute the direct sum of the Lie algebras so(n, l)Osu(l, 1). One can choose 
only two additional commuting integrals among three J'. Let them be the square of 
the total momentum J 2  and the integral 

2 ( - J ' +  J 2 )  = xi-.:-. . .-x: = c (5.19) 
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whichgives the equation of a hyperboloid H. ( c  = 1). Notice that two Casimiroperators 
5’ and I,,, s,M$ (of su(l, I )  and so(n, l ) ,  respectively) are connected with each 
other, as for the sphere (equation (3.8)). Thus, we have established the isomorphism 
between integrable systems with all quadratic integrals of motion: that on the algebra 
SP of the variables s. (equation (2.1)) and that on the Lie algebra so(n, l)Osu(l, I )  
of the variables Mas, MO, and J 

Let us now consider all possible degenerations of s-coordinates for the classes 
U-% (equations (5.3), (5.7), (5.12) and (5.16)). The following schemes construct an 
arbitrary graph of s-systems on H. with the help of the ‘irreducible’ blocks U-% [SI: 

(U) 

.L ‘s’ so, 
4, 

(W a + i b  I l f J l  

i 
S., 

The general graph of s-systems for H. is constructed as the connected tree graph 
in accordance with the above rules. The symbol S ,  indicates s-coordinates on the 
p,-sphere. Ep indicates those on the Euclidean p-space and H p ,  denotes those on the 
p,-hyperboloid. It is important to note that ‘irreducible’ blocks of the b, K and % 
types can enter in a given graph only once. The arrows descending from the different 
cells indicate degenerations, i.e. that the corresponding cell is complex; and these 
arrows indicate blocks revealing this degeneration. The arrows pointing to the block 
for the p,-sphere were met in the two previous sections. New possibilities are in the 
U-, &- and %classes, where arrows can point to subhlocks of the hyperboloid H,, 
and of the Euclidean space E,. In the first case one must join any possible graph for 
the hyperboloid H,, to the block of class in full analogy to the joining of a sphere. 
The second case demands special attention. Recall that the ‘irreducible’ blocks for E, 
are of two types: ellipsoidal (equations (4.2) and (4.4)) or paraboloidal (equations 
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(4.5) and (4.7)). These blocks appear when degenerating the ‘irreducible’ blocks in the 
classes E and iD in a slightly modified form. The corresponding modified L-operators 
look like 

k 

L(u)= ~- 
U -e, 

for the ellipsoidal block, and 

* e  
L(u)= 1 -- -LI I u + K .  

.= (+I  u - e, 

(5.20) 

(5.21) 

for the paraboloidal block, where i = 2 for class 6 and i = 3 for class D. Vectors I and 
K 2 s K  are defined by formulae (5.14), and vector X, coincides with X when changing 
x z , p 2  on x,, p , .  The arrow pointing to Ep will then indicate joining of the vector (5.20) 
or (5.21) plus their degenerations, analogously to the previous section. In the cells, 
which this arrow descends from, the vector M will be complex: M =s,+s,+. . .+sk. 

Let us illustrate this technique for the example of the two-dimensional hyperboloid 
H 2 .  The higher dimensions can he analysed in the same way. Notice that the H below 
are the additional integrals to the su(1,l) Casimir operator C = M i ,  + M i 2  - M:, on H 2 .  
(i) Elliptic coordinates, a71 

L(u) = sn/u + s , / ( u  - 1) + s2/ (u  - a )  H =  M i 2 + a M & .  

(ii) Hyperbolic coordinates, 

L( U )  = so/(u - a )  + sI/u + sz/ (u  - 1) H =  M i , - a M : 2 .  

(iii) Semihyperbolic coordinates, 

L(u) = s2/u +[snI/(u -a - ib)+cc]  

where sol is given in equation ( 5 . 5 ) ,  and H = a M &  + b { M , z ,  Mod. 

ates (&=-I ) ,  
(iv)-(v) Hyperbolic parabolic coordinates ( E  = +l), and elliptic parabolic coordin- 

~~ W 

s2 K M & 

U - a  U U 2a 
L ( u ) = - + 7 + -  H =  M & + - ( M i z - M o J 2  

where vectors K and M are given in equation (5.10). 
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(vi) Semicircular parabolic coordinates, 

I K M  
L ( u ) = 7 + 7 + -  

u u u  

where the I, K, M are given in equation (5.14), and H = { M o , ,  M,2-Mo2] 
(vii) Equidistant coordinates, 

M u )  = (so + SI)/ + S>/( - 1)  

L2(u)  = so/u + s , / (u  - 1 )  H = M i , .  

(viii) Spherical coordinates, 

E t c l  
M u )  = S o / ~ + ( S , + S d / ( U  - 1 )  

L,(u) =s , /u+s , / (u-  1) H = M:,. 

(ix) Horicyclic coordinates, 

E 1  M s2 

2 U2 U U 
L , ( u ) = - - + -  L,(u)  = - - I  

where I and M are given in equation (5.14), and H = (M,2-M02)2 .  
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6. Discussion 

In the present work the isomorphism between two large classes of integrable systems 
with all quadratic integrals of motion has been studied. The first family is the integrable 
systems connected with the separation of variables in the Helmholtz operator. on the 
real Riemannian spaces of constant curvature, the second one is the simplest hyperbolic 
Gaudin magnet with various 'boundary terms'. For the cases of an n-sphere and an 
n-hyperboloid we have established the important fact that the trees (graphs) of 
s-systems on these spaces are equivalent to those appearing in the summation of 
n-hyperbolic momenta. This equivalence of different diagrammatic calculi gives us the 
following result: the unitary matrices between one 'tree' basis and .another are simply 
the 3 n j  symbols of the su(1,l) algebra. The majority of the literature has been devoted 
to calculations of such matrices (&coefficients) but as far as I know this simple fact 
has not been observed before. 

One of the important features in my opinion is the use of the linear r-matrix algebra 
and of the corresponding 2 x  2 L-operators. This formulation of quadratics on con- 
sidered spaces is also new. 

It should be noticed that the above s-coordinates are general orthogonal coordinate 
systems on three spaces and include as special case [4,5] the 'tree' (poly- and hori- 
spherical) graphs due to Vilenkin [3]. 

n s  Ior iunner sruuy, me auriiur ~ n r e n u s  LO GUIISIUCL L U ~ L ~ L G A  a p n c ~ s  UL WLIUL~LIII 

curvature and other homogeneous symmetric spaces of rank 1. The above-described 
isomorphism was announced in [IO] for the real three-dimensional sphere and in [ 113 
for all manifolds in a classical setting (the Hamilton-Jacobi equation). 

1 -  c.- _~_I._ ..~~>.. &L. .... L.. : _.__ 1. .- ̂̂_^:A-- ~ ^_^^^" ^ P  e---&"... 
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