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Equivalence of two graphical calculi

Vadim B Kuznetsov

Department of Mathematical and Computational Physics, Institute of Physics,
St Petersburg University, St Petersburg 198904, Russia

Received 26 February 1992

Abstract. We consider the integrable systems which are connected with separation of
variables in the Helmholtz operator on the real Riemannian spaces of constant curvature.
An isomorphism is given for these systems with a quantum hyperbolic Gaudin magnet.
Using this isomorphism, the complete classification of all separable coordinate systems on
the manifolds considered is provided by means of the corresponding L-operators for the
Gaudin magnet.

1. Introduction

Let us consider the problem of separation of variables in the Helmholtz equation

(& =1,..,m)

o
W_T'a_(‘/_g"‘” ) Ev (1.1)
where the Hamiltonian H describes the free motion of a quantum particle in the
Riemannian space with metric g** (g =det(g*?)). We will only consider the real
n-dimensional positive definite Riemannian spaces of constant curvature: n-sphere
S,, Euclidean n-space E,, and upper sheet of the double-sheeted hyperboloid H,
having a constant curvature equal to 1, 0 and —1, respectively:

(i) 8, the set of real vectors x=(x, ..., X,,,) which satisfy X5} x2 =1 and have
infinitesimal distance dx”=X"%! dx?;

(ii) E,, the set of real vectors x=(x,,..., x,) with infinitesimal distance dx?=
Zo- dxi;

(iii} H,, the set of real vectors x=(xg, X,,...,X,) which satisfy x;—34_, x =
1, xo>1, and have infinitesimal distance dx>=dx2—-X"_, dx>.

Separation of variables (e.g. see [1]) indicates solution of equation (1.1) for the
wavefunction ¥ in the following product form:

¥= fI W, (205 ClynnesCh) (1.2)

a=1

where ¥, depends only the variable z, and on the complete set of quantum numbers
€., Which are the eigenvalues of mutually commuting integrals of motion. We will call
orthogonal coordinate systems, in which equation (1.1) allows variable separation,
s-systems (or s-coordinates or s-variables) from the abbreviation of the word separable.
The main problem is to find all s-systems, to introduce corresponding separation
variables, to carry out the procedure of variable separation, and to write explicitly the
separation equations (i.e. ones for ¥,), which we then have to solve somehow.

0305-4470/92/226005+ 22$07.50 © 1992 IOP Publishing Ltd 6005
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The Helmholtz equation (1.1) with the g-metrics of an n-sphere, Euclidean n-space
or n-hyperboloid has been met in a great number of works (see [1-5] and references
therein). It is impossible to mention all those concerning separation of variables in
this equation. We will refer here to [4] and [5], where the complete classification of
all s-systems for the above manifolds is given.

Each s-system gives rise to a set of separation constants or integrals of motion.
These integrals are quadratic functions on the generators of the Lie symmetry algebras
of the spaces considered:

(i) so(n+1): M,s =X.pg — XgP. a,B=1,...,n+1
i[M,g, M s 1=8, Mz +8,sMg, + 85, M5 + 855M.,

{ii) e(n): Mz, p, a,fB,y=1,...,n
i[Mag, Py] = 85yPu = BarPp (Pe> Pp1=0

(iii) so(n, 1): Mz, My, = xop, + X,Po a,B,vy=1,...,n
i[M.g, Mo, ]=85,M, — 6,,Myg i[ M., Mog]= M.z

where the variables x, and pg are canonical: [ p,, xa] = —i8,5. The integrals of motion
commute between themselves, and, due to full separation, their number is equal to
the number of degrees of freedom. So we can say that each s-system is connected to
the Liouville integrable system with a complete set of quadratic integrals of motion.

In [4, 5] the graphical technique to characterize all s-systems on S,, E, and H,
was developed. Each particular s-system was fixed by a graph. In the present paper
we propose the equivalence of that graphical calculus to the one appearing in the well
known problem of summing » quantum momenta. To recap, one must sum the n
three-dimensional momenta s,, =1, ..., n. If one knows howtosumthe k=2,...,n
momenta then one has a graph corresponding to the particular method of summing.
To know how to sum is equivalent to knowing how to supplement the total momentum
J =23 _; 5, by n —2 additional mutually commuting quadratic operators on s, to obtain
the complete set of operators.

In the present paper we give the algebraic interpretation of the classification in
[4, 5]. We establish here the isomorphism between all the integrable systems, connected
with all possible s-systems for the three spaces, and an n-site su(1, 1) Gaudin magnet.
This Gaudin magnet is the integrable system, with a complete set of quadratic integrals
of motion, given on the direct sum of the Lie algebras of rank 1: P, _, su,. (1, 1). Using
this isomorphism, the complete classification of separable coordinate systems is pro-
vided by means of the corresponding L-operators for the Gaudin magnet. The Gaudin
magnet considered in this paper is the universal integrable system with guadratic

fbnmanle Al cnndinim lnedma F onn nm avien intanera]l AF mmAtian on 117a fam gaw th
HICEIAls Ul [ILIULIVIL 114 YILE o dd dll CAlia Ltgldl Ul LITULIULL, 34U WL vall day t

a direct relation with the summing of momenta.

2. The quantum hyperbolic Gaudin magnet

Let us consider the direct sum of Lie algebras of rank 1: o =@, _, su,(1, 1). Generators
s,,a=1,...,n, of the »-algebra satisfy the commutators

[si, s§]=—18,588u5 0 g =diag(1, -1, ~1). (2.1)
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In the following we will use the g-metric to calculate the norm and scalar product of
the operator vectors s5,:

Si = (Sﬂ, sa) = (S;)2—(Si)2— (S?z)z (sa’ s.B) = Sls;i _Sisé _st:,;.
The Casimir operators of the of-algebra (2.1) have the form s> = k, (k, — 1), where for
the discrete senes k,=1,3,2,3,...,and for the representation of the universal envelop-
ing group—the SU(l 1) group—k varies continuously from zero to infinity: 0 < k, <co.
We will define as the hyperbolic Gaudin magnet [6-9] the following quantum
integrable Hamilton system on & given by n commuting integrals of motion H,:

H =2y Bass) [H,, Hy]=0. (2.2)
B=1 €, —€g
Here e, are mutually non-coinciding real parameters of the model. To be more exact
one has to call this model the n-site su(1, 1) — XXX Gaudin magnet. Notice that all
the H, are quadratic functions on generators of the «-algebra, and we have the
equalities

Y H,= Y eH,=J"- F 5%
a=1 a=1 a=l
where the new variable
J=7 s, 2.3)

is introduced, which is the total sum of the hyperbolic momenta s,. The components
of the vector J obey the su(l, 1} Lie algebra similarly to {2.1) and commute with al
the H,. The complete set of commuting integrals of motion is provided by the following
choice: H,, J*, and, for example, (J*). The integrals (2.2) and (2.3) are generated by
the 2x2 L-operator [7-9]

LS| is? —(s,',—-sz)) (A B)
Liu)= ¥ —— ) = 24
(u) ,Elu—e (—(s’+s§) —is? C -—-A (2:4)
g-det L(u) = —A%u) ~{B(w), C(u)}
H, n §2
_—Z -2

oy u—€y aci(u—e,)?

satisfying the standard linear algebra with the r-matrix being the operaior P of
permutation in C*@C*
1000
1 2 1 1 2 o010
= + P= . .
[L(w), L(v)]= — [P, L(u)+ L(s)] 0100 (25)
0001

Here we use the familiar notation for the tensor products of L(u) and the 2x2 unit
mairix f:

1 2

Lw)=L(u)®TI L(v)=1® L(v).

It follows from equation (2.5) that g-det L(u) is the generating function of the
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commuting integrals of motion:

[g-det L{u), g-det L(v)]=0.
3. a-sphere S,_,

Let us consider the following realization of the «f-algebra (2.1) in terms of the canonical
operators P, X, ([ pa, Xa]==18,p):

Se=(pa+xp)/4 sa=(pa—x3)/4 Sa={PuXal/4 (3.1)
In this case the Casimir operators take the values s2 = — %, i.e. k, =1,3. Introduce the
new operators

M, = X.pg ~ XgPq (3.2)
which are the generators of rotations in the space of vectors xR". We have

(Sa, 85) =3(Mog +12) a# B (3.3)
The variables M, are the generators of the Lie algebra so(n):

i[(Mop, M5 =8, Msp + 8,5Mg, + 85, Mos+855M,,. (3.4)

£oAN

Equaiiiy {3.3) esiabiishes a simpie quadraiic conneciion beiween ihe generaiors s, of
s and the M,, of so(n). Under this isomorphism the integrals (2.2) transform into
the following family of integrals, describing free motion on the n-sphere S,_,:

—h
H=Y hH, == BMi,+ 3.5
2 4,:(26 ea_eB( aff 2) ( )

For h,=e, we get the Casimir operator of the so(n) algebra, =,.; M f.ﬁ, and for
h, = e we have the Hamiltonian of the quantum n-dimensional Euler-Manakov top,

=3 L (eateg)(Mip+3) (3.6)

a<fB

possessing in our case the complete set of quadratic integrals of motion. Integrals (3.5)

have the form of the Uhlenbeck integrals for the n-dimensional Neumann system in

the case of a vanishing quadratic field, i.e. for the free motion on the n-sphere S, _,.
Expressions for the components of total hyperbolic momentum J take the form

Ji=1(p*+x?) Jr=3p’—x7) P =i Pos X} (3.7)
Variables M, and J form the direct sum so(n)@su(1, 1},
[MaB: -’i]=0 [-Ij, -Ik]=_i8jkagrzjr g=diag(l,~1,—1).

Recall that the three variables J' commute with all the H {equation (3.5)) and we can
choose from them only two (additional to H) commuting integrals. Let them be the
following quantities: the square of the total momentum,

JP=1 T Mig+i(n*—4n) (3.8)

o<

which is expressed through the Casimir operator of algebra (3.4), and, simultaneously,
is equal to the Casimir operator of the su(1, 1) algebra (3.7}, and the integral

AN -T)=xP=¢ (3.9
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which gives us the equation of the n-sphere S,_, (¢=1). Note that the presented
quadratic isomorphism (3.1)-(3.9) between variables s, and M,; connects two
integrable systems formulated on the different algebras (2.1) and (3.4). More exactly,
the isomorphism is between the integrable system on the «-algebra with generators
s, and the one on the so(n)@su(1, 1) algebra with generators M,; and J.

Let us proceed to the separation of variables on the n-sphere S,_, (3.9). Having
the above-shown isomorphism of the two systems, we can easily carry out separation
of variables using the L-operator (2.4) and the algebra (2.5) for the hyperbolic Gaudin
magnet. The most general s-system on S,_; is the system of ellipsoidal coordinates
[4, 5], which is graphically pictured by the following ‘irreducible’ block:

e e | e e, (3.10)

where e, €R are (as before) mutually non-coinciding real parameters, ordered in

increase. The separation variables are defined as zeros of the off-diagonal element

B(u) of the L-matrix (2.4): B(u;)=0,j=1,...,n~1,

n 0750 (4 —e,)
x2f(u=-e)=0=Du=u P e e e S 3.11

=1 /( ) ! HB#H (eﬁ“eﬂf) ( )

These ellipsoidal coordinates u; on the sphere S,_; satisfy the inequalities

a

21<u1<el<u2... LU < e,

Each cell €, of the block (3.10) gives rise to an item of the L-operator (2.4} in summing
upon «. Notice here that x2 = 2(s! —s2).
For each u; let us define the additional variable u; as follows:

v = —iA(u) =i z

a=] W Ey

{Xa, Do} (3.12)

(the left substitution!). In what follows we will introduce the s-variables ; and
conjugate to them v; as above: the first ones as zeros of B(u), and the second ones as
values of A(u) in these zeros.

The changing of the variables s, (or M,, J) for the new variables v, u;, ¢, and J*
is the procedure of variable separation. One can rewrite the L-operator (2.4) with the
new variables as

_{A(u)  B(u) eI (u—u)
L(“)‘(C(u) —A(u)) B == (ume) (3.13)
_2' n—1 1
Alw) === B(u)(f’—jgl -, D,-vj)
where
- M., (4—e,) - -—-—-—-xi )_1
b=z £ 2y) o B

The formula for A(u) is obtained by interpolation with data (see equations (3.12),
(2.4), (3.1) and (3.7),

A(uj)-;iv}' J=1L...,n-1 A(u)—""—u;-)':;.fs-!-
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and the expression for B(u) follows from the definition of the s-variables u, (equation
(3.11)).

Using the algebra (2.5) for the L-operator (2.4), one can prove the following
commutators:

[e, PPl=ic [, w.]=—i8;
[C, ui] = [C: U,'] = [J3s ui] = [-IB, Ui] =0 [ui’ uk] = [vis uk] =0.

The procedure by which similar relations are derived from the algebra (2.5) is given
in [8]. Having the interpolation (3.13) for A(u) and B(u), one can easily verify the
following properties of conjugation of the introduced operators:

(3.15)

c*=c (IH*=r uf=u, D= v}¥D,. (3.16)

From the v; one can construct the self-conjugated operators w; by the formulae
1
W =vVDp,—— v, =—=—w~/D,. (3.17)
thi] ,‘ i /Dj £ J

The operators ¢, J°, u, and w; also obey the algebra (3.15). Equating the residues at

u = g, on the right- and left-hand sides of the interpolation for A(u) (equation (3.13))

gives the equality _ . ‘ B}
2 n—1

Py X =xf(ﬁ ) Dv) (3.18)

j=1€; — U

All the other explicit formulae for changing of variables can be listed, i.¢. the connection
between the two sets of 2n variables: p,, x, and u;, v;, ¢, J*, where a =1,...,n and
j=1,...,n-1

A further problem is to find the separation equations. Let us substitute u=1u; (the

iefi subsiiiution!) in ithe equaiion for g-del (equation 12.4)) io gei ihe n—1 operaior
equalities:
n 1 1
2
-vj=1 ( H.+ 2sa)- (3.19)
a=1 uj—em (uj—ea)

We consider the spectral problem
H ¥ =h ¥ . (3.20)

where the Helmholtz operator (1.1) is the J* commuting with alt the H,. By action of
the right- and left-hand sides of the operator equality (3.19) on ¥, we obtain the n—1
equations of the form

2wt v (e {s2) \w 0 - (3.21)
y am1 \M;— €, tu —e)}

where the brackets {) denote the eigenvalue of an operator. In terms of w; the above
equations look like

J_qr+z( o -+ ta) )Jﬁjw=0. (3.22)

U= (u_e )

If we demand factorization of the wavefunction ¥ in accordance with condition (1.2)
of variable separation in the form

¥ =7 T %) (3.23)
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where V is the Vandermond determinant,

V= 1_[ (ul. —uk) (3.24)
i<k
then the partial functions ¥;(w;) will satisfy the following separation equations:
1 hq (sa)
\/__7 v 2(\/P(u W (u))+£] (u o) i(u)=0 (3.25)

where P(u) =II; ., (#—e,). Notice that the Vandermond determinant (3.24) appears
to prov1de the invariant measure on the sphere S._{c=x*=1).

“The equations obtained are separation equations for each of n—1 degrees of
freedom which are connected by common eigenvalues of the integrals H,. We did not
carry out the rather complex procedure of standard separation of variables in the
~ Helmbholtz equation {1, 2, 4, 5], which gives the s-equations (3.25). Representation
through 2 x 2 matrices (2.4) and (2.5), which is equivalent to the Lax pair, did allow
us to simplify greatly the derivation of all the formulae and, in particular, the main
equations (3.25) for partial functions.

In the following it will be more suitable to deal with the vector L{u) instead of
the L-matrix (2.4):

Liu)=y —= L(u)= (o, L(x)) (3.26)

a=1 o

0 -1 0 -1 —-i 0
1_ 2_ 3_
7 (*1 o) 7 (1 0) 7 (0 i)'

This vector satisfies the similar linear algebra (see equations {2.1} and (2.5})

where

[L(w), L*(0)) = 22 (1) - L7(0)). (3.27)

This algebra possesses the following important property {(as well as the original algebra
(2.5) of course): if we have L,(u) and Ly(u), which both obey equation (3.27), and it
is true that [Li(u), Li(v)]1=0, then L(u)=L,(u)+ L,(u) also obeys equation (3.27).

Let us proceed now to the consideration of all possible degenerations of s-coordin-
ates (3.10) [4, 5]. These coordinates were fixed by n different real parameters e,.
Degeneration means that some of them must coincide. The coinciding e, can be
pictured by a cell from which descends an arrow pointing at the ‘internal structure’
of this coincidence, which is the subblock with the parameters f3, 8 =1,...,p:

‘3| _______ ea ....... en—p+!|

2 ’ f;

The block with f; can in turn consist of complex cells. In this case there must be
attached to each such cell one arrow pointing at its ‘internal structure’, and so on. The
general s-system on the n-sphere is fixed by a connected graph consisting of the blocks
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(3.10) with the different parameters e,, and these blocks are linked by arrows. In each
block (apart from the highest} only one arrow can enter. From each block the arrows
can descend: one from each complex cell. A cell is called elementary if no arrow
descends from it. The dimension of the sphere §,_, associated with the graph is
calculated by the formula k = (number of elementary cells). The elementary vector
s, 55 = —15 is associated with each elementary cell, the complex vector s,: 52 #* ~ 15
is asso<:1ated with each complex cell, and the elementary momenta, of which the_ ‘
complex vector consists, are indicated by arrows on the graph. Consider, for example,
the graph

€ €; €,

iy \ (3.28)

£ f, f, f d, d,

L P v 5 : Z

which gives some s-system on the sphere 86 The momenta s, , 5, g, S7,, Sg,, S4,, 54,
are elementary, but s, =35_,s;,5., =25, sy, are complex. To each cell there
corresponds a vector,

el (u) = se,/(” ) Lez(u) ‘—"SEZ/(M - ez)

and for all cells gathered in some block we have the vector L(u) in the form of a sum
(3.26). Each elementary vector is parametrized by the canonical variables x, and p,,
in full analogy to the non-degenerate case (3.1). Let we deal with the sphere S,_,.
Then there exist n elementary momenta s,, @ =1,..., n, and formulae (3.1)-(3.4) are
true. Introduce ordering of the elementary cells by writing down the integral number
a=1,...,n in increasing order for the corresponding elementary momentum as
follows: first we go from left to right in the highest block, up to the first complex cell,
then we descend to a subblock, where go again from left to right, up to the first complex
cell in this subblock, and so on. If we arrive at the end of some subblock then we go
up, and so on. For instance, for the graph (3.28) the ordering looks like

1 2 =3
2 3 4 5 6 7
h L2 S Js d, ds
This graph corresponds io the foliowing scheme for summation of the su(i, i) momenia
S, a=1.,.,7
J =[5+ (5;+ 53+ 5,+55) + (5t 57)] (3.29)

where every pair of brackets fixes a block on the graph. With formulae of the same
type as equation (3.29} the structure of graph can be restored uniquely and vice versa.
The parameters of the graph together with its structure allow us to write the integrals
of motion, the corresponding s-variables and the separation equations. For this we
have to set the vector L(u) to each block. The separation variables are determined as
zeros of the off-diagonal element B(u) of the matrix L(u), or as zeros of L'{u)— L*(u)
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in thé case of the vector L{u). They have different forms for different blocks. Let us
list all the s-systems for the so(4) Lie algebra, i.e. on the sphere §;:

(i) Jacobi elliptic coordinates,

0 1 a b

L{u)=s,/u+s:/(u—1}+s,/(u—a)+s,/(u—b)
H1=M$2+Mf3/a+M?4/b
Hy=M3+M3/(1-a)+ M3/ (1-b).

(ii) Lamé rotational coordinates,

(a)
0 1 a
0 1
Li{u)=s/u+s/(u—1)+(s3+3s,)/(u—a)
Ly(u)=s3/u+s,/(u—1)
H1=M§4 H2=Mf3+M%4+aMfz
() 0 1 a
0 i
Li(u)=s/ut(sts)/(u—1)+s/(u~a)
Lo(u)=s/u+s;/(u—1)
H|=M§3 H2=M%4+0(M122+Mf3)-

(iii) Lamé subgroup reduction,

0 1

N\

0 1 a

Li(u}=s/u+(s;+s;+s,)/{u—1)
Ly(uy=sy/u+s/(u—1)+s,/(u—~a)
H1=Mfz+Mf3+Mf4 H2=M§4+0M§3'
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(iv) Spherical coordinates,

0 1

~\

o
—

N\

0 1

Li(u)=s,/u+(s;+s,+s,)/(u—1)
Ly(u}=sy/u+(s;+s)/(u—-1)
Ly(u)=s3/u+s,/(u—1) H1=M§3+M§4 H2=M§4-

(v) Cylindrical coordinates,

/N

Lt(.") =(s;+5)/ut(s3+5,)/(u—1)
Ly(u)=s/uts/(u-1)
Li(u)=s;/u+s,/(u—1) H,=M3, H2=M§4-

"All these six types of s-systems are exactly the six ways of {generalized) summing
the four su(1, 1) momenta s,:

(i) J=(st5,+5+5,)
(ii) (a) J=(5,+8,+(5;+35,))
{b) J=(5+ (5,4 85)+8,)
(iii) J=(s,+(s2+8,+5))
{iv) J={(5,+(s;+(s;+5,)))
(v) J=((8:+5) +(55+54))

where each pair of parentheses corresponds to a particular block on the graph. The
integrals of motion are extracted from the L?(u) and the separation equations for the

¥ look like
(v}+ Li{u))¥ =0 (3.30)

where i is the index of a block, and j is the index of one of s-variables for this block.
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Notice that in L(u;) in equation (3.30) the integrals H,, are replaced by their eigenvalues
h... For the explicit form of these s-equations, see [2].

It is not difficult to derive also the formulae giving the explicit transformation to
new variables. We recommend to the reader the original works [4, 5] for more details
concerning graphical records of the s-systems. Notice that our interpretation of the
graphs presented here seems to be more transparent than in the original works, because
we associate the hyperbolic momentum with each cell of a graph, and these momenta
exist because of the non-trivial (but simple in formulae) isomorphism of two integrable
systems,

4. Euclidean space E,

To proceed from the sphere S, _, to the Euclidean space E, one hasto add the generators
P, to the rotations M., (equation (3.2)), thus obtaining the e{(n) Lie algebra for the
generators Mg, p,,a, 8, ¥=1,...,n One has also to write three more formulae in
addition to equations (3.1)-(3.4):

Satsi=pi/2 [P.. Ps]=0
i[Ma,Ba P‘y] = B.Gypa - Buypﬁ-

(4.1}

Thus, a simple quadratic connection is established between the generators s, of the
sf-algebra and the generators of the e(n) algebra. The complete classification of all
s-systems on E, [4, 5] includes two non-degenerate cases: ellipsoidal and paraboloidal
coordinates, and, of course, their possible degenerations fixed by different graphs. Let
us first consider the ellipsoidal ones. Introduce

1
r 5 1
L{u)= e -1]. .
w=£ 42

The integrals of motion H, in this case can be obtained as residues of L*(u). The
ellipsoidal coordinates on E,, are defined as before, i.e. as zeros of L'(u)— L*(u):

2 n
noox ne, (u,—e,)

ol =]=>Hu=u; xi=—J_'L_. 43
421 u—e, 4 Hﬁ,ea(EB_ea) ( )

The separation equations have the standard form (3.30). Such coordinates wu; are
pictured by the following graph [4, 5]:

< e | e | .. e, > (4.4)

Let us proceed to the description of paraboloidal coordinates. Introduce

1 u_2x1
—= —u+2x1 . (4.5)
=2p,

Lw)=y —=

a=2 U =€,
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Paraboloidal coordinates on E, are defined as zeros L'(u)~ L*(u):

n x2
& -—u+2x, = =i =
Euse x=0=u=uy Jj=1,...,n
., (4, —e
= = Tas
X2, = 1 ( ) a=1,...,n—1 (4.6)

-Hﬂ#a (eﬁ _ea)

iz )

J=1

The cells e, {s,) collected in the paraboloidal block (4.5) we will picture as {4, 5]

[ e N e, ] (4.7)
L

P

The above-introduced n-dimensional orthogonal coordinates satisfy the following
inequalities:

{i} ellipsoidal coordinates,

gL <e <. <U, (<e,<u,
(ii} paraboloidal coordinates,

Uy <@gy €p... Uy <€y < U,

The general graph corresponding to an arbitrary s-system on E, can be constructed
as a sum of disconnected graphs of the type

(i) < e, P ey, |- eN,l >

b !

SPL Sp1 P,
or
(i)
[ e] ez ------ el’l‘ ------ eNf —i ]
oo }
s, S, S,.,

where the complex momenta of blocks are as usual marked by arrows pointing out
their ‘internal structure’, which is described by blocks of the sphere §,,_ .

As an example of this technique fet us list all s-systems in the three-dimensional
Euclidean space, i.e. on the e¢(3) Lie algebra. Notice that H, and H, given below are
the additional integrals to p?, which is the Casimir operator of e(3).

(i) Cartesian coordinates,

() (D) ()
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1 1
1 1
Ll(u)=31/u-z -1 Lz(u)=32/u—z -1
0 0
] 1
Ls(“)=33/““z -1 . H,=p} H,=p3.
0

(i) Cylindrical coordinates,

(Lo D) (L)
N\

0 1
] 1
Ll(”)=(51+32)/“_z -1 Ly(u)=s/u+s,/(u—1)
0
1 1
Ls(u)=53/“‘z -1 H|=M%2 H2=P§~

0

(iii) Elliptic cylindrical,

(KR EEREN)

1
1
Lu)=s/u+s,/(u—a)—=| -1
4
0
1 1
Lz(“)=53/"_1 -1 H1=M$2+QP% H2=P§‘
0
(iv) Parabolic cylindrical,
L) (e
1 u_le 1 1
L,(u)=sz/(u—a)—z —u+2x, Lz(u)=s3/u—z -1
-2p, 0

2

H,={M12,p2}-ap§ H,=p;.
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(v) Spherical,

(L)

<
—

N

0 1
1 1
Ll(u)=(31+52+53)/u—z -1 Ly(u)=s,/u+(s;+5)/(u—1)
0
Ly(u)=s/u+s;/(u—1) H|=M%2+M§3+M§1 H2=M§3-
‘(vi) Prolate spheroidai,
{ENER)
0 1
1 1
Ll(u)=sl/u+(Sz+sa)/(u—a)—j4* -1 Ly(u)=so/u+s5/(u—~1)
0
H1=%(Mf2+Mf3)+aPi H2=M§3-
(vii) Oblate spheroidal,
(e =)
0 1
] 1
Ll(“)'—'(51"'52)/“’*'33/(“_“)'2 -1 Ly(u)=s,/u+s,/(u—1)
0

H,=}(M3i,+M3;) —ap3 H,=M7,.
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(viii) Parabolic,
(KN

0 1
1 u-'-le
Ll(")=(52+53)f(u‘0)“‘z —u+2x, Ly(u)=s;/u+s;/(u—1)
_2P1
H1={M12,P2}+{M13,P3}+0Pf H2=M§3-
(ix) Parabolodial,
a b
u"‘2x1
L(u)=s2/(u—a)+s3/(u—b)—z —u+2x,
—2Pl

H={M,;, p;} +{M,s, ps} - an_bpg
H,= M%a/(a —b}+{M,,, p.} - ap%.
(x) Ellipsoidal,

T

1
1
L(u)=sl/u+s2/(u—a)+33/(u—b)—z -1
0
H1=M¥2/“+M33/b+1’f H2=M§2/4+M§3/(ﬂ"b)“1’§-

(xi) Conical,
(Lo 1)
\

] 1 a
] 1
Li{u)=(s;+8+5)u——] -1
4 0

Lu)=s;/u+s/(u—1)+s/(u-a)
H1=M32+M§3+M§1 H2=Mf3/a+M§3/(a-]).
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In full analogy to section 3, one can restore all the vectors L;(u) in the new variables
4; and v, thereby obtaining the explicit formulae of variables changing. Note that the
classification of the s-systems presented for the Helmholtz equation in E,,

PV =E¥

using the classification of the corresponding L-operators, is simpler than the standard
procedure of variable separation. The separation variables and equations are defined
in the same way as in the previous section; in doing so we get the separation equations
of different form for the different blocks in a graph. In contrast, for the non-degenerate
block we obtain a unique separation equation for all s-variables, but considered on
different intervals.

S. Hyperboloid H,

To proceed from the sphere §,_, to the hyperboloid H, one has to add the hyperbolic
rotations My, = x,p, +x,p, to the M., (equation (3.2}), obtaining the so(n, 1) Lie
algebra for the generators Mz, My, o, 8, ¥ =1,..., n, which is the algebra of the
isometry SO(n, 1} group of H,. One also has to write the following realization of the
new hyperbolic momentum s, through the canonical operators xy and p, ([ po, x,] = —i):

so=—(po+x5)/4 so=—(ps—x3)/4 so={po, Xo}/4
(80, 5a) = = (M3, —3)/8 (S0, S0} = — 7% (5.1)
i[Maa, MO'y] = 6,87M0a - aa'yMO,B il My, Mop] = Ma,EI-

Notice that, in contrast to the s, one must choose the discrete D™ series of the gﬁ( 1,1}
representation for the s; {equation (5.1}). Thus, we have connected the generators
5., 5o to the generators M,,, M,.. The complete classification of all s-systems on H,
[5] is more complicated in comparison with the sphere and Euclidean space. There
are four classes of s-systems here, II, B8, €, and D, and in the 1I-, €- and D-classes
the number of different coordinate types increases with dimension. We describe all
these systems with the help of the corresponding vectors L{u) satisfying the algebra
{3.27). The order of the description will foliow the one fixed in the two previous
sections. The algebraic interpretation presented allows us to formulate the theory for
all s-systems on H, in a compact and uniform way.
Let us begin with the class U. Introduce
z S 50

L{u)= +
( ) 021 u_ea+1 u_el

(5.2)
where the parameters e,,..., €,,, are in increasing order. The separation equations
are written in the standard way:

(Vi +L¥u)¥ =0 k=1,...,n

where the variables v, are defined as before as values of L*(u;) (see equations (3.12}
and (3.26)). The s-coordinates u, are pictured by the following ‘irreducible’ block [5]:

e e, e ep1 |- . (53)
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Let us proceed to the description of the s-systems of class B. Introduce new
variables: .

1 ] 1 .
X =ﬁ(x1:‘=1xu) Pi=ﬁ (p1£ipo)
(5.4)
x¥=x. pE=p=.
Notice that the xi.and P are canonical operators:
[P+, p-1=[x+,x_]=[xs, p.]=0 [ps.x1=[p-, x.]=-i
From them the nfon—self—adjoint hyperbolic momenta
’ pi+xt pi+xt
So1 =7 pr-xi $§=— pi—xi (5.5)
{p-,x:} {p+,x_}

are constructed. The systems of class B are fixed by following vector L(u)(a, beR):

L=y —Se 4 Su . Sh (5.6)
a2 l—foy u—a—ib u-—a+ib’ '

The corresponding s-coordinates u; are pictured by the following ‘irreducible’ block [ 5]:

a+ib f Ll e Jocr |- 5.7

Consider now the s-systems of class €. Introduce the canonical operators x. and
P via

1 1
xi=5(x1ixu) P==E(P1ipo)
' {5.8)
[P+! P—] = [x+9 x—] = [x::s pi] =O [p+: x+] = [P—, x—] =L
The vector L{u) connected with s-systems of class € has the form
n ) K M
= = 5.9
L= e umar T u=a (59
where parameters g,, ..., £, € R, in increasing order, do not ceincide with each other
and with the real parameter a. Vectors K and M are defined as follows:
pi+xl
K:i pi—xi M=SO+S1 (5'10)
2p.x_

where ¢ =x1. It is not difficult to verify that the L(u) {(equation (5.9}) satisfies the
algebra (3.27), and K plus M obey the following e(2, 1) algebra:
K\ K/1=0 K’/ M*]=—igyngmK"
[ ] - * (5.11)
[Mja Mk] = _isjkngnnM"-
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The coordinates u; of class € are pictured by the following ‘irreducible’ block [5]:

£ a g g v ogo |- (5.12)

Consider now the final class . We will use the x. and p. defined for class € by
equation {5.8). Let us introduce the vector L{u) for this class,
" 5, I K M
L(u}= ¥

+
a=3u_ha~2 (u_..a)3 (u_a)2 u—a

(5.13)

where the parameters h,,..., h,_; €R, in increasing order, do not coincide with each
other and with the real parameter a. Vectors I, K and M have the form

pi+x | [PeP2t XX
=5 pi—xi K=E P+p2'—x2x— M=s0+sl+s2' (5.14)
2P+x_ P+X> + PaXx_

It is easy to verify that L{u) (equation (5.13)) satisfies the algebra (3.27), and I, K and
M obey the following commutators;

[Ij; I"]=[Ijs K"]ZO [st Kn]=—i£jnpgpp1p
(I, M"]= —ign g, 1" [K’, M"]=—ign,g,, K” (5.15)
[M’, M"]=—ie;,g,M".

The s-coordinates u; of the class © are pictured diagrammatically as follows [5]:

a h, Y R (5.16)

In the cases 11-D there exists an additional integral, which is the total hyperbolic
momentum:

J=s5,+8+...+s,. (5.17)

Its components take the form (cf equation (3.7))

(5.18)
J =i ¥ ep(ph—x3) P=3 T {pp. x5}
=0 g=o

where ¢ =—1if =0, and &5 =1 otherwise. Variables M5, My, 2,8, y=1,...,n,
and J constitute the direct sum of the Lie algebras so(n, 1)@su(1, 1). One can choose
only two additional commuting integrals among three J'. Let them be the square of
the total momentum J* and the integral

A= +J)=xi-xi—.. . —xi=c¢ (5.19)
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which gives the equation of a hyperboloid H, (¢ = 1). Notice that two Casimir operators
J?and X, <p B M f"_p (of su(1, 1) and so(n, 1), respectively) are connected with each
other, as for the sphere (equation (3.8)). Thus, we have established the isomorphism
between integrable systems with all quadratic integrals of motion: that on the algebra
o of the variables s, (equation (2.1)} and that on the Lie algebra so(n, 1)@su(1, 1)
of the variables M,,, M,, and J.

Let us now consider all possible degenerations of s-coordinates for the classes
1-D (equations (5.3), (5.7), (5.12) and (5.16)). The following schemes construct an
arbitrary graph of s-systems on H, with the help of the ‘irreducible” blocks 11-D [5]:

(1) € €
/ |
Y {
Sm

H,
(*B) [ a+ib S
!
S.PJ
(€) [ £ a 2
T
SPJ

Ep

(D) a h,
!
S,
Ep P

The general graph of s-systems for F, is constructed as the connected tree graph
in accordance with the above rules. The symbol §,, indicates s-coordinates on the
pr-sphere. E, indicates those on the Euclidean p-space and H, denotes those on the
p1-hyperboloid. It is important to note that ‘irreducible’ blocks of the B, € and D
types can enter in a given graph only once. The arrows descending from the different
cells indicate degenerations, i.e. that the corresponding cell is complex; and these
arrows indicate blocks revealing this degeneration. The arrows pointing to the block
for the p,-sphere were met in the two previous sections. New possibilities are in the
I, @- and D-classes, where arrows can point to subblocks of the hyperboloid H,
and of the Euclidean space E,. In the first case one must join any possible graph for
the hyperboloid H ,, to the block of class U in full analogy to the joining of a sphere.
The second case demands special attention. Recall that the ‘irreducible’ blocks for E,
are of two types: ellipsoidal (equations (4.2) and (4.4)} or paraboloidal (equations
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(4.5) and (4.7}). These blocks appear when degenerating the ‘irreducible’ blocks in the
classes & and D in a slightly modified form. The corresponding modified L-operators
look like

L(u)=§ L (5.20)

a=i U~ €y

for the ellipsoidal block, and

K s
L{u)= ¥ ——-Iu+K, (5.21)
a=i+l U™ €,

for the paraboloidal block, where i =2 for class € and i =3 for class D. Vectors I and
K, = K are defined by formulae (5.14), and vector K, coincides with K when changing
Xz, p; on x5, p;. The arrow pointing to E, will then indicate joining of the vector (5.20)
or (5.21) plus their degenerations, analogously to the previous section. In the cells,
which this arrow descends from, the vector M will be complex;: M =s,+5,+...+5,.
Let us illustrate this technique for the example of the two-dimensional hyperboloid
H,. The higher dimensions can be analysed in the same way. Notice that the H below
are the additional integrals to the su(1, 1) Casimir operator C = M2, + M3, — M3, 0on H,.

(i) Elliptic coordinates,

Euw)=s,/u+s/(u~1)+s5/(u—a) H=M§2+aMgl.

(ii) Hyperbolic coordinates,

L(u)=so/(u=a)+s/uts/(u=1)  H=M=aMi,.

(iii) Semihyperbolic coordinates,

a+ib 0

L{w) =8/ u+ 856,/ {0t —a—ib}+cc]

where sy, is given in equation (5.5), and H = aMi +b{M,,, Mg} ' .
(iv)-(v) Hyperbolic parabolic coordinates (¢ = +1), and elliptic parabolic coordin-
ates (e =—1),

€ 0 a
A
K
Ly =—2+ XM o (M- My
u—a u u 2a

where vectors K and M are given in equation (5.10).
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(vi) Semicircular parabolic coordinates,

I
L(u) =—+
U

K M
_+_

2

4

u

where the I, K, M are given in equation (5.14), and H ={M,,, M,,— M,,}.
(vii) Equidistant coordinates,

Ll(u)=(s0+sl)/u+sz/(u-1)
L{uw)=s,/u+s/(u—1) H=M},.

(viii} Spherical coordinates,

b

0 1

Ly(u}=sp/u+(s;+8s)/(u—1)
Lyuy=s,/u+s;/(u—1) H=M3,.

(ix) Horicyclic coordinates,

[s 0
(C)

el M
2u’ u

where I and M are given in equation (5.14), and H = (M, — M,,)%.

Li(w)=2-1

Ly(u)= +
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6. Discussion

In the present work the isomorphism between two large classes of integrable systems
with all quadratic integrals of motion has been studied. The first family is the integrable
systems connected with the separation of variables in the Helmholtz operator on the
real Riemannian spaces of constant curvature, the second one is the simplest hyperbolic
Gaudin magnet with various ‘boundary terms’. For the cases of an n-sphere and an
n-hyperboloid we have established the important fact that the trees (graphs) of
s-systems on these spaces are equivalent to those appearing in the summation of
n-hyperbolic momenta. This equivalence of different diagrammatic calculi gives us the
following result: the unitary matrices between one ‘tree’ basis and .another are simply
the 3nj symbols of the su(1, 1) algebra. The majority of the literature has been devoted
to calculations of such matrices (t-coefficients) but as far as I know this simple fact
has not been observed before.

One of the important features in my opinion is the use of the linear r-matrix algebra
and of the corresponding 2x2 L-operators. This formulation of quadratics on con-
sidered spaces is also new.

It should be noticed that the above s-coordinates are general orthogonal coordinate
systems on three spaces and include as special case [4, 5] the ‘tree’ (poly- and hori-
spherical) graphs due to Vilenkin [3].

As for furiher siudy, the author intends to consider complex spaces of constant
curvature and other homogeneous symmetric spaces of rank 1. The above-described
isomorphism was announced in [10] for the real three-dimensional sphere and in {11]
for all manifolds in a classical setting (the Hamilton-Jacobi equation).
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